\(\int \frac {d+e x}{(4-5 x^2+x^4)^2} \, dx\) [26]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 94 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {d x \left (17-5 x^2\right )}{72 \left (4-5 x^2+x^4\right )}+\frac {e \left (5-2 x^2\right )}{18 \left (4-5 x^2+x^4\right )}+\frac {19}{432} d \text {arctanh}\left (\frac {x}{2}\right )-\frac {1}{54} d \text {arctanh}(x)+\frac {1}{27} e \log \left (1-x^2\right )-\frac {1}{27} e \log \left (4-x^2\right ) \]

[Out]

1/72*d*x*(-5*x^2+17)/(x^4-5*x^2+4)+1/18*e*(-2*x^2+5)/(x^4-5*x^2+4)+19/432*d*arctanh(1/2*x)-1/54*d*arctanh(x)+1
/27*e*ln(-x^2+1)-1/27*e*ln(-x^2+4)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1687, 12, 1106, 1180, 213, 1121, 628, 630, 31} \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {19}{432} d \text {arctanh}\left (\frac {x}{2}\right )-\frac {1}{54} d \text {arctanh}(x)+\frac {d x \left (17-5 x^2\right )}{72 \left (x^4-5 x^2+4\right )}+\frac {1}{27} e \log \left (1-x^2\right )-\frac {1}{27} e \log \left (4-x^2\right )+\frac {e \left (5-2 x^2\right )}{18 \left (x^4-5 x^2+4\right )} \]

[In]

Int[(d + e*x)/(4 - 5*x^2 + x^4)^2,x]

[Out]

(d*x*(17 - 5*x^2))/(72*(4 - 5*x^2 + x^4)) + (e*(5 - 2*x^2))/(18*(4 - 5*x^2 + x^4)) + (19*d*ArcTanh[x/2])/432 -
 (d*ArcTanh[x])/54 + (e*Log[1 - x^2])/27 - (e*Log[4 - x^2])/27

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 628

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Dist[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 630

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rule 1106

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 - 2*a*c + b*c*x^2)*((a + b*x^2 + c*
x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(b^2 - 2*a*c + 2*(p +
1)*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {d}{\left (4-5 x^2+x^4\right )^2} \, dx+\int \frac {e x}{\left (4-5 x^2+x^4\right )^2} \, dx \\ & = d \int \frac {1}{\left (4-5 x^2+x^4\right )^2} \, dx+e \int \frac {x}{\left (4-5 x^2+x^4\right )^2} \, dx \\ & = \frac {d x \left (17-5 x^2\right )}{72 \left (4-5 x^2+x^4\right )}-\frac {1}{72} d \int \frac {-1+5 x^2}{4-5 x^2+x^4} \, dx+\frac {1}{2} e \text {Subst}\left (\int \frac {1}{\left (4-5 x+x^2\right )^2} \, dx,x,x^2\right ) \\ & = \frac {d x \left (17-5 x^2\right )}{72 \left (4-5 x^2+x^4\right )}+\frac {e \left (5-2 x^2\right )}{18 \left (4-5 x^2+x^4\right )}+\frac {1}{54} d \int \frac {1}{-1+x^2} \, dx-\frac {1}{216} (19 d) \int \frac {1}{-4+x^2} \, dx-\frac {1}{9} e \text {Subst}\left (\int \frac {1}{4-5 x+x^2} \, dx,x,x^2\right ) \\ & = \frac {d x \left (17-5 x^2\right )}{72 \left (4-5 x^2+x^4\right )}+\frac {e \left (5-2 x^2\right )}{18 \left (4-5 x^2+x^4\right )}+\frac {19}{432} d \tanh ^{-1}\left (\frac {x}{2}\right )-\frac {1}{54} d \tanh ^{-1}(x)-\frac {1}{27} e \text {Subst}\left (\int \frac {1}{-4+x} \, dx,x,x^2\right )+\frac {1}{27} e \text {Subst}\left (\int \frac {1}{-1+x} \, dx,x,x^2\right ) \\ & = \frac {d x \left (17-5 x^2\right )}{72 \left (4-5 x^2+x^4\right )}+\frac {e \left (5-2 x^2\right )}{18 \left (4-5 x^2+x^4\right )}+\frac {19}{432} d \tanh ^{-1}\left (\frac {x}{2}\right )-\frac {1}{54} d \tanh ^{-1}(x)+\frac {1}{27} e \log \left (1-x^2\right )-\frac {1}{27} e \log \left (4-x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.96 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \left (\frac {12 \left (e \left (20-8 x^2\right )+d x \left (17-5 x^2\right )\right )}{4-5 x^2+x^4}+8 (d+4 e) \log (1-x)-(19 d+32 e) \log (2-x)-8 (d-4 e) \log (1+x)+(19 d-32 e) \log (2+x)\right ) \]

[In]

Integrate[(d + e*x)/(4 - 5*x^2 + x^4)^2,x]

[Out]

((12*(e*(20 - 8*x^2) + d*x*(17 - 5*x^2)))/(4 - 5*x^2 + x^4) + 8*(d + 4*e)*Log[1 - x] - (19*d + 32*e)*Log[2 - x
] - 8*(d - 4*e)*Log[1 + x] + (19*d - 32*e)*Log[2 + x])/864

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.88

method result size
norman \(\frac {-\frac {1}{9} e \,x^{2}+\frac {17}{72} d x -\frac {5}{72} x^{3} d +\frac {5}{18} e}{x^{4}-5 x^{2}+4}+\left (-\frac {19 d}{864}-\frac {e}{27}\right ) \ln \left (x -2\right )+\left (-\frac {d}{108}+\frac {e}{27}\right ) \ln \left (x +1\right )+\left (\frac {d}{108}+\frac {e}{27}\right ) \ln \left (x -1\right )+\left (\frac {19 d}{864}-\frac {e}{27}\right ) \ln \left (x +2\right )\) \(83\)
risch \(\frac {-\frac {1}{9} e \,x^{2}+\frac {17}{72} d x -\frac {5}{72} x^{3} d +\frac {5}{18} e}{x^{4}-5 x^{2}+4}-\frac {\ln \left (x +1\right ) d}{108}+\frac {\ln \left (x +1\right ) e}{27}+\frac {\ln \left (1-x \right ) d}{108}+\frac {\ln \left (1-x \right ) e}{27}-\frac {19 \ln \left (2-x \right ) d}{864}-\frac {\ln \left (2-x \right ) e}{27}+\frac {19 \ln \left (x +2\right ) d}{864}-\frac {\ln \left (x +2\right ) e}{27}\) \(99\)
default \(-\frac {\frac {d}{144}-\frac {e}{72}}{x +2}+\left (\frac {19 d}{864}-\frac {e}{27}\right ) \ln \left (x +2\right )+\left (-\frac {d}{108}+\frac {e}{27}\right ) \ln \left (x +1\right )-\frac {\frac {d}{36}-\frac {e}{36}}{x +1}-\frac {\frac {d}{36}+\frac {e}{36}}{x -1}+\left (\frac {d}{108}+\frac {e}{27}\right ) \ln \left (x -1\right )+\left (-\frac {19 d}{864}-\frac {e}{27}\right ) \ln \left (x -2\right )-\frac {\frac {d}{144}+\frac {e}{72}}{x -2}\) \(106\)
parallelrisch \(-\frac {-240 e -204 d x +76 \ln \left (x -2\right ) d +128 \ln \left (x -2\right ) e -32 \ln \left (x -1\right ) d -128 \ln \left (x -1\right ) e +32 \ln \left (x -2\right ) x^{4} e +96 e \,x^{2}-160 \ln \left (x -2\right ) x^{2} e +40 \ln \left (x -1\right ) x^{2} d +160 \ln \left (x -1\right ) x^{2} e -40 \ln \left (x +1\right ) x^{2} d +160 \ln \left (x +1\right ) x^{2} e +95 \ln \left (x +2\right ) x^{2} d -160 \ln \left (x +2\right ) x^{2} e +19 \ln \left (x -2\right ) x^{4} d -76 \ln \left (x +2\right ) d +128 \ln \left (x +2\right ) e +32 \ln \left (x +1\right ) d -128 \ln \left (x +1\right ) e +60 x^{3} d -8 \ln \left (x -1\right ) x^{4} d -32 \ln \left (x -1\right ) x^{4} e +8 \ln \left (x +1\right ) x^{4} d -32 \ln \left (x +1\right ) x^{4} e -19 \ln \left (x +2\right ) x^{4} d +32 \ln \left (x +2\right ) x^{4} e -95 \ln \left (x -2\right ) x^{2} d}{864 \left (x^{4}-5 x^{2}+4\right )}\) \(251\)

[In]

int((e*x+d)/(x^4-5*x^2+4)^2,x,method=_RETURNVERBOSE)

[Out]

(-1/9*e*x^2+17/72*d*x-5/72*x^3*d+5/18*e)/(x^4-5*x^2+4)+(-19/864*d-1/27*e)*ln(x-2)+(-1/108*d+1/27*e)*ln(x+1)+(1
/108*d+1/27*e)*ln(x-1)+(19/864*d-1/27*e)*ln(x+2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 169 vs. \(2 (80) = 160\).

Time = 0.28 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.80 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=-\frac {60 \, d x^{3} + 96 \, e x^{2} - 204 \, d x - {\left ({\left (19 \, d - 32 \, e\right )} x^{4} - 5 \, {\left (19 \, d - 32 \, e\right )} x^{2} + 76 \, d - 128 \, e\right )} \log \left (x + 2\right ) + 8 \, {\left ({\left (d - 4 \, e\right )} x^{4} - 5 \, {\left (d - 4 \, e\right )} x^{2} + 4 \, d - 16 \, e\right )} \log \left (x + 1\right ) - 8 \, {\left ({\left (d + 4 \, e\right )} x^{4} - 5 \, {\left (d + 4 \, e\right )} x^{2} + 4 \, d + 16 \, e\right )} \log \left (x - 1\right ) + {\left ({\left (19 \, d + 32 \, e\right )} x^{4} - 5 \, {\left (19 \, d + 32 \, e\right )} x^{2} + 76 \, d + 128 \, e\right )} \log \left (x - 2\right ) - 240 \, e}{864 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="fricas")

[Out]

-1/864*(60*d*x^3 + 96*e*x^2 - 204*d*x - ((19*d - 32*e)*x^4 - 5*(19*d - 32*e)*x^2 + 76*d - 128*e)*log(x + 2) +
8*((d - 4*e)*x^4 - 5*(d - 4*e)*x^2 + 4*d - 16*e)*log(x + 1) - 8*((d + 4*e)*x^4 - 5*(d + 4*e)*x^2 + 4*d + 16*e)
*log(x - 1) + ((19*d + 32*e)*x^4 - 5*(19*d + 32*e)*x^2 + 76*d + 128*e)*log(x - 2) - 240*e)/(x^4 - 5*x^2 + 4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 604 vs. \(2 (78) = 156\).

Time = 2.04 (sec) , antiderivative size = 604, normalized size of antiderivative = 6.43 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=- \frac {\left (d - 4 e\right ) \log {\left (x + \frac {- 6006260 d^{4} e + 2341251 d^{4} \left (d - 4 e\right ) - 18247680 d^{2} e^{3} + 24099840 d^{2} e^{2} \left (d - 4 e\right ) + 7387904 d^{2} e \left (d - 4 e\right )^{2} - 665280 d^{2} \left (d - 4 e\right )^{3} + 587202560 e^{5} - 12582912 e^{4} \left (d - 4 e\right ) - 36700160 e^{3} \left (d - 4 e\right )^{2} + 786432 e^{2} \left (d - 4 e\right )^{3}}{1675971 d^{5} - 66150400 d^{3} e^{2} + 318767104 d e^{4}} \right )}}{108} + \frac {\left (d + 4 e\right ) \log {\left (x + \frac {- 6006260 d^{4} e - 2341251 d^{4} \left (d + 4 e\right ) - 18247680 d^{2} e^{3} - 24099840 d^{2} e^{2} \left (d + 4 e\right ) + 7387904 d^{2} e \left (d + 4 e\right )^{2} + 665280 d^{2} \left (d + 4 e\right )^{3} + 587202560 e^{5} + 12582912 e^{4} \left (d + 4 e\right ) - 36700160 e^{3} \left (d + 4 e\right )^{2} - 786432 e^{2} \left (d + 4 e\right )^{3}}{1675971 d^{5} - 66150400 d^{3} e^{2} + 318767104 d e^{4}} \right )}}{108} + \frac {\left (19 d - 32 e\right ) \log {\left (x + \frac {- 6006260 d^{4} e - \frac {2341251 d^{4} \cdot \left (19 d - 32 e\right )}{8} - 18247680 d^{2} e^{3} - 3012480 d^{2} e^{2} \cdot \left (19 d - 32 e\right ) + 115436 d^{2} e \left (19 d - 32 e\right )^{2} + \frac {10395 d^{2} \left (19 d - 32 e\right )^{3}}{8} + 587202560 e^{5} + 1572864 e^{4} \cdot \left (19 d - 32 e\right ) - 573440 e^{3} \left (19 d - 32 e\right )^{2} - 1536 e^{2} \left (19 d - 32 e\right )^{3}}{1675971 d^{5} - 66150400 d^{3} e^{2} + 318767104 d e^{4}} \right )}}{864} - \frac {\left (19 d + 32 e\right ) \log {\left (x + \frac {- 6006260 d^{4} e + \frac {2341251 d^{4} \cdot \left (19 d + 32 e\right )}{8} - 18247680 d^{2} e^{3} + 3012480 d^{2} e^{2} \cdot \left (19 d + 32 e\right ) + 115436 d^{2} e \left (19 d + 32 e\right )^{2} - \frac {10395 d^{2} \left (19 d + 32 e\right )^{3}}{8} + 587202560 e^{5} - 1572864 e^{4} \cdot \left (19 d + 32 e\right ) - 573440 e^{3} \left (19 d + 32 e\right )^{2} + 1536 e^{2} \left (19 d + 32 e\right )^{3}}{1675971 d^{5} - 66150400 d^{3} e^{2} + 318767104 d e^{4}} \right )}}{864} + \frac {- 5 d x^{3} + 17 d x - 8 e x^{2} + 20 e}{72 x^{4} - 360 x^{2} + 288} \]

[In]

integrate((e*x+d)/(x**4-5*x**2+4)**2,x)

[Out]

-(d - 4*e)*log(x + (-6006260*d**4*e + 2341251*d**4*(d - 4*e) - 18247680*d**2*e**3 + 24099840*d**2*e**2*(d - 4*
e) + 7387904*d**2*e*(d - 4*e)**2 - 665280*d**2*(d - 4*e)**3 + 587202560*e**5 - 12582912*e**4*(d - 4*e) - 36700
160*e**3*(d - 4*e)**2 + 786432*e**2*(d - 4*e)**3)/(1675971*d**5 - 66150400*d**3*e**2 + 318767104*d*e**4))/108
+ (d + 4*e)*log(x + (-6006260*d**4*e - 2341251*d**4*(d + 4*e) - 18247680*d**2*e**3 - 24099840*d**2*e**2*(d + 4
*e) + 7387904*d**2*e*(d + 4*e)**2 + 665280*d**2*(d + 4*e)**3 + 587202560*e**5 + 12582912*e**4*(d + 4*e) - 3670
0160*e**3*(d + 4*e)**2 - 786432*e**2*(d + 4*e)**3)/(1675971*d**5 - 66150400*d**3*e**2 + 318767104*d*e**4))/108
 + (19*d - 32*e)*log(x + (-6006260*d**4*e - 2341251*d**4*(19*d - 32*e)/8 - 18247680*d**2*e**3 - 3012480*d**2*e
**2*(19*d - 32*e) + 115436*d**2*e*(19*d - 32*e)**2 + 10395*d**2*(19*d - 32*e)**3/8 + 587202560*e**5 + 1572864*
e**4*(19*d - 32*e) - 573440*e**3*(19*d - 32*e)**2 - 1536*e**2*(19*d - 32*e)**3)/(1675971*d**5 - 66150400*d**3*
e**2 + 318767104*d*e**4))/864 - (19*d + 32*e)*log(x + (-6006260*d**4*e + 2341251*d**4*(19*d + 32*e)/8 - 182476
80*d**2*e**3 + 3012480*d**2*e**2*(19*d + 32*e) + 115436*d**2*e*(19*d + 32*e)**2 - 10395*d**2*(19*d + 32*e)**3/
8 + 587202560*e**5 - 1572864*e**4*(19*d + 32*e) - 573440*e**3*(19*d + 32*e)**2 + 1536*e**2*(19*d + 32*e)**3)/(
1675971*d**5 - 66150400*d**3*e**2 + 318767104*d*e**4))/864 + (-5*d*x**3 + 17*d*x - 8*e*x**2 + 20*e)/(72*x**4 -
 360*x**2 + 288)

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.88 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \, {\left (19 \, d - 32 \, e\right )} \log \left (x + 2\right ) - \frac {1}{108} \, {\left (d - 4 \, e\right )} \log \left (x + 1\right ) + \frac {1}{108} \, {\left (d + 4 \, e\right )} \log \left (x - 1\right ) - \frac {1}{864} \, {\left (19 \, d + 32 \, e\right )} \log \left (x - 2\right ) - \frac {5 \, d x^{3} + 8 \, e x^{2} - 17 \, d x - 20 \, e}{72 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="maxima")

[Out]

1/864*(19*d - 32*e)*log(x + 2) - 1/108*(d - 4*e)*log(x + 1) + 1/108*(d + 4*e)*log(x - 1) - 1/864*(19*d + 32*e)
*log(x - 2) - 1/72*(5*d*x^3 + 8*e*x^2 - 17*d*x - 20*e)/(x^4 - 5*x^2 + 4)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.93 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{864} \, {\left (19 \, d - 32 \, e\right )} \log \left ({\left | x + 2 \right |}\right ) - \frac {1}{108} \, {\left (d - 4 \, e\right )} \log \left ({\left | x + 1 \right |}\right ) + \frac {1}{108} \, {\left (d + 4 \, e\right )} \log \left ({\left | x - 1 \right |}\right ) - \frac {1}{864} \, {\left (19 \, d + 32 \, e\right )} \log \left ({\left | x - 2 \right |}\right ) - \frac {5 \, d x^{3} + 8 \, e x^{2} - 17 \, d x - 20 \, e}{72 \, {\left (x^{4} - 5 \, x^{2} + 4\right )}} \]

[In]

integrate((e*x+d)/(x^4-5*x^2+4)^2,x, algorithm="giac")

[Out]

1/864*(19*d - 32*e)*log(abs(x + 2)) - 1/108*(d - 4*e)*log(abs(x + 1)) + 1/108*(d + 4*e)*log(abs(x - 1)) - 1/86
4*(19*d + 32*e)*log(abs(x - 2)) - 1/72*(5*d*x^3 + 8*e*x^2 - 17*d*x - 20*e)/(x^4 - 5*x^2 + 4)

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.89 \[ \int \frac {d+e x}{\left (4-5 x^2+x^4\right )^2} \, dx=\ln \left (x-1\right )\,\left (\frac {d}{108}+\frac {e}{27}\right )-\ln \left (x+1\right )\,\left (\frac {d}{108}-\frac {e}{27}\right )-\ln \left (x-2\right )\,\left (\frac {19\,d}{864}+\frac {e}{27}\right )+\ln \left (x+2\right )\,\left (\frac {19\,d}{864}-\frac {e}{27}\right )+\frac {-\frac {5\,d\,x^3}{72}-\frac {e\,x^2}{9}+\frac {17\,d\,x}{72}+\frac {5\,e}{18}}{x^4-5\,x^2+4} \]

[In]

int((d + e*x)/(x^4 - 5*x^2 + 4)^2,x)

[Out]

log(x - 1)*(d/108 + e/27) - log(x + 1)*(d/108 - e/27) - log(x - 2)*((19*d)/864 + e/27) + log(x + 2)*((19*d)/86
4 - e/27) + ((5*e)/18 + (17*d*x)/72 - (5*d*x^3)/72 - (e*x^2)/9)/(x^4 - 5*x^2 + 4)